dlesmeo

WEBINAR

Monitoring

Security -
RS e pt. 2022 €

& 11h0O0 Lionel Porcheron

CEO & co-fondateur de Bleemeo
bleemeo .com

Who am I?

Lionel Porcheron, CEO & co-founder Bleemeo

*Ops background, managing 500+ machines in classical DC and
in the Cloud

*DevOps for +15 years (started my monitoring journey with
Aagies-netsaint)

*Toulouse DevOps Meetup Leader, Capitole du Libre Leader

Bleemeo?

Observability & Monitoring as a service solution
Monitor your Servers, Containers, and applications in 30s
Prometheus, Graphite, StatsD, Nagios, compatible

2 Open Source projects (https://github.com/bleemeo):

o Glouton, universal monitoring agent written in Go with
Prometheus, StatsD, Graphite, Nagios compatibility

o SquirrelDB, a scalable Prometheus compatible storage
backend based on Cassandra

https://github.com/bleemeo

Security Challenges

Systems are more and more exposed to Internet

Systems are more and more complex

More and more security issues in software

Everything is software: your phone, your laptop, VPN, AP wifi...

An annual audit is no more enough. Security evaluation must be
performed continuously

You know people who have been hacked (at least ransomware)

Server, Containers and applications monitoring

DevSecOps

* Following DevOps principle, integrating Security

concerns
DEPLOY

* All teams need to integrate security in their
design

o

U

(75
31v¥3do

* The “corporate firewalls” are no more enough to
warranty security %,

2

€St MONITOR

Server, Containers and applications monitoring

Security Information & Event Management

* Usually called ”"SIEM”
* Splunk, Elastic have “SIEM” product offers
* Centralize all events from your infrastructure

* Detect security incidents that could be associated to events
collected

* Detect unexpected behaviors
* Have dashboards and potentials alerts related to those events

* We are creating a simple SIEM in your monitoring tool

= leemeo Server, Containers and applications monitoring

Security is not binary...
... It should be measurable

Monitoring Security

Metrics permit to measure infrastructure security issues
Metrics permit to identify what you should do first

Identify key metrics for monitoring your infrastructure
security:

* Number of pending security patches to be applied
* Number of authentications failure

* Infrastructure key indicators: network bandwidth, CPU
usage

* Applications errors rate

Server, Containers and applications monitoring

Key Metrics / “Golden Signals”

The RED Method

*(Request) Rate - the number of requests, per second, your services are
serving.

*(Request) Errors - the number of failed requests per second.

*(Request) Duration - distributions of the amount of time each request takes.

The USE Method
*(Resource) Utilization: as a percent over a time interval. e.g., "one disk is running at 90% utilization".
*(Resource) Saturation: as a queue length. e.g., "the CPUs have an average run queue length of four".

*(Resource) Errors: scalar counts. e.g., "this network interface has had fifty late collisions".

Server, Containers and applications monitoring

Use Prometheus format!

Prometheus in a nutshell

* Prometheus was "initiated" in 2012 at Soundcloud and is now a (graduated) CNCF project

* Prometheus became de-facto standard for monitoring

* A Time Series Database where data is identified by metric name and labels (key/value pairs)
* A powerful PromQL query language

* No complex storage: designed to store multiple days (not weeks) of data

* Data are collected via a poll over HTTP

* A rich ecosystem with exporters (to get metrics) and web panels (query & display)

Prometheus

Z; lesmeo Server, Containers and applications monitoring

Prometheus metrics

* Prometheus metrics endpoint is a plain text "web
I:)agell

< C @ © @ localhost:8000/metrics

django_http_requests latency seconds by view method bucket{le="+Inf",method="GET",view="prometheus-django-metrics"} 1.0
django_http_requests_latency seconds by view method count{method="GET",view="prometheus-django-metrics"} 1.0
django_http_requests_latency seconds by view method sum{method="GET",view="prometheus-django-metrics"} 0.004497956004342996

django_http_requests_latency seconds_by view method bucket{le=

django_http_requests_latency seconds by view _method |_bucket{l
django_http_requests_latency seconds_by view | | method |_bucket{l
django_http_requests_latency seconds by view | method |_bucket{l
django_http requests latency seconds by view method bucket{l
django_http_requests_latency seconds by view | method |_bucket{l

.01",method="GET",view="<unnamed view>"} 1.0
025", method="GET",view="<unnamed view>"} 2.0
.05",method="GET",view="<unnamed view>"} 2.0
075", method="GET",view="<unnamed view>"} 2.0
1",method="GET",view="<unnamed view>"} 2.0

25" ,method="GET",view="<unnamed view>"} 2.0

NUNHOOOOO® O

django_http requests latency seconds by view I | method |_bucket{l 5", method="GET",view="<unnamed view>"} 2.0
o H u m a n rea d a b | e d;ango http_requests_ 1atenc¥ seconds_by view | method |_bucket{l 75" ,method="GET",view="<unnamed view>"} 2.0
django_http requests latency seconds by view I _method |_bucket{l 0", method="GET",view="<unnamed view>"} 2.0
django_http_requests_latency seconds by view | method |_bucket{l 5", metho ET",view="<unnamed view>"} 2.0
django_http requests latency seconds by view I _method |_bucket{l 0", metho ET",view="<unnamed view>"} 2.0
django_http_requests_latency seconds by view | method |_bucket{l .5",method="GET",view="<unnamed view>"} 2.0
r-'rl django_http_requests latency seconds by view I | method | bucket{le="10.0",method="GET",view="<unnamed view>"}
¢ Sca ped by a Pro etheus Se rver django_http_requests_latency seconds by view _method |_bucket{le="25.0",method="GET",view="<unnamed view>"}
django_http requests latency seconds by view method bucket{le="50.0",method="GET",view="<unnamed view>"}
django_http_requests_latency seconds by view | method |_bucket{le="75.0",method="GET",view="<unnamed view>"}
django_http requests latency seconds by view method bucket{le="+Inf",method="GET",view="<unnamed view>"}
. . django_http_requests_latency seconds_by view method_count{method="GET", v1ew—"<unnamed view>"} 2.0
[] D t b d th P QL django_http requests latency seconds by view method sum{method="GET",view="<unnamed view>"} 0.01597754599788459
a a Ca n e q u e rl e WI ro m django_http_requests_latency seconds by view | method |_bucket{le="0.01",method="GET",view="bleemeo_quote.views.index"} 686.0
django http requests latency seconds by view method bucket{le="0.025",method="GET",view="bleemeo quote.views.index"} 689.0
django_http_requests_latency seconds by view | method |_bucket{le="0.05",method="GET",view="bleemeo_quote.views.index"} 689.0
django_http requests latency seconds by view method bucket{le="0.075",method="GET",view="bleemeo quote.views.index"} 692.0
° django_http_requests_latency seconds by view | method |_bucket{le="0.1",method="GET",view="bleemeo_quote.views.index"} 692.0

django_http requests latency seconds by view method bucket{le=
django_http_requests_latency seconds by view | method |_bucket{le=
django_http requests latency seconds by view method bucket{le=
django_http_requests_latency seconds by view | method |_bucket{le=
django http requests latency seconds by view method bucket{le=
django_http_requests_latency seconds by view | method |_bucket{le="5.0",method="GET",view="bleemeo_quote.views.index"} 692.0

django http requests latency seconds by view method bucket{le="7.5",method="GET",view="bleemeo quote.views.index"} 692.0
django_http_requests_latency seconds by view | method |_bucket{le="10.0",method="GET",view="bleemeo_quote.views.index"} 692.0
django_http requests latency seconds by view method bucket{le="25.0",method="GET", view="bleemeo quote.views.index"} 692.0
django_http_requests_latency seconds by view | method |_bucket{le="50.0",method="GET",view="bleemeo_quote.views.index"} 692.0
django_http requests latency seconds by view method bucket{l 75.0",method="GET",view:"bleemeofquote.views.index"} 692.0
django_http requests latency seconds by view method bucket{le="+Inf",method="GET",view="bleemeo quote.views.index"} 692.0
django_http_requests latency seconds by view method count{method="GET",6view="bleemeo quote.views.index"} 692.0
django_http_requests_latency_seconds by view | method |_sum{method="GET",view="bleemeo_quote.views.index"} 1.1842275859380607

TYPE django http requests latency seconds by view method created gauge

django_http_requests_latency seconds_by view method created{method "GET",view="prometheus-django-metrics"} 1.572701763289514e+09
django_http requests latency seconds by view method created{method="GET",view="<unnamed view>"} 1.5727017632967687e+09
django_http_requests_latency_seconds by view | method |_created{method="GET",view="bleemeo_quote.views.index"} 1.5727018193420057e+09
HELP d]ango http requests unknown latency total Count of requests for wh1ch the latency was unknown.

25", method="GET",view="bleemeo_quote.views.index"} 692.0
5",method="GET",view="bleemeo_quote.views.index"} 692.0
75", method="GET",view="bleemeo_quote.views.index"} 692.0
0",method="GET",view="bleemeo_quote.views.index"} 692.0
5",method="GET",view="bleemeo_quote.views.index"} 692.0

Can be used by Prometheus ecosystem: Alert
Manager, Grafana...

NUNHFOOOO0 00

Server, Containers and applications monitoring

lesmeo

Centralize Security Health
In your existing Monitoring Solution

System monitoring

You should monitor on your systems:
Resource utilization: CPU, memory, |/0, disk space
Number of pending security updates

SSL Certificates validity

leemeo Server, Containers and applications monitoring

Network monitoring

You should monitor your network (even in Cloud):
Bandwidth usage from equipment's
Find unexpected network traffic
CPU/memory usage of network gears if you have some

Use SNMP to collect data

;f; leemeo Server, Containers and applications monitoring

Logs monitoring

You should monitor your logs! Create metrics from logs:
Errors rate
Number of lines of logs
Number of failed authentications

Use regexp to identify interesting patterns in logs

<~ Check our blog post using mtail to create metrics:

blee.moe/metrics-logs

esmeo Server, Containers and applications monitoring

- U‘ESI I

‘|||0" ||"'l| i iy = 4,,I"' P

"/bin

blee.moe/metrics-logs

Monitor external availability

* Monitor service availability from outside of
your network

* Use external probes to monitor your service
* Monitor service from external point of view

*Use open source project: Blackbox exporter
(for e.g.) or Cloud solutions: Uptime Robot,
Bleemeo

; legmeo Server, Containers and applications monitoring

Use Prometheus Exporters

Prometheus Ecosystem has multiple exporters related to security:

* Suricata/Snort exporter (NIDS)

* CrowdSec exporter (HIDS)
 pfSense/OpnSense exporter (firewall)
* SNMP exporter

* Create your own is very simple!

<" exporters list: blee.moe/promexporters

i leemeo Server, Containers and applications monitoring

https://blee.moe/promexporters

Building custom dashboards

* If you use Prometheus, usual solution is Grafana

* You can find dashboards templates

* You can build your dashboards

* Prioritize golden signals of all cluster for your default dashboard
* Have detailed dashboards to go deeper for each node/Pod

* Cloud tools like Bleemeo offer automatic dashboarding

Server, Containers and applications monitoring

11111111111

lllllllllllllllllllllllll

ooooooooooo

0.51

0.41
Load

fon 4.88

% 0.05
Load

Reuse existing alerting!

* Monitoring comes with alerting
* Golden signals are a good source of alerts

* Alerting means immediate attention is
required

* Notify only when human action is required

* Check your dashboards

i:]_eemeO Server, Containers and applications monitoring

Bleemeo simplifies and automates
monitoring infrastructure security

Bleemeo Monitoring Solution

* Cloud based solution

O Critical 0 Warning Health Overview Infrastructure Timeline

4 Serv 123 Checks

4 Online 123 OK

t1s01-web01 - Nginx is ok Qa
TCP OK - 152.786us response time

* Compatible with Prometheus and market
standards (StatsD, Nagios, ...)

1ls01-k8s02.bleemeo.work - Redis
k8s_redis_redis-
0_quote_d043a023-6785-43dc-
299b-8444a590069f_1 is critical
Container is stopped 1day

t1s01-k8s02.bleemeo.work - Agent Q1
onnection is ok

1day ago

* Agent run on each server and discover services,
containers and create dashboards for you

tIs01-web01 - Nginx is critical fal
Connection timed out after 10

1s01-web01 - Nginx is ok)
TCP OK - 163.448)s response o

* Alerting with Slack, Teams, mail, SMS, ...

tIs01-k8s01 - Agent connectionis 4
Legend: @ DEB8 ok
ok

2days ago
. .
[] tIs01-web01 - Nginx is critical fal
You currently have 4 servers connected. You can connect up to 100 Connect another server to Bleemeo platform | oop coien - http_code=500 2 days ago
servers. B Check our online documentation ('

@ Contact our support team
1ls01-web01 - Agent connectionis 0
ol

You currently have 3 monitors. You can configure up to 20 monitors.

standard PromQL

tIs01-web01 - Agent connectionis 4
critical
nnect

* Mobile application for iOS and Android

Server, Containers and applications monitoring

Security Monitoring with Bleemeo

k8s_demo dashboard

Kubelet Status

* Pending security patches out of the box

* Connect to any Prometheus capable probe

* Monitor all network equipment’s with SNMP - HR
* Get a global health view of your infrastructure
(security and all key indicators)
B ts01-k8s01 2 ‘ G+ 108
W orkgsozbleemeon.. Y €0 @0 69 021
W ootkgsosbleemeon.. €0 @Y @ @ 13

Server, Containers and applications monitoring

Example of CrowdSec Integration

CrowdSec is an open-source software that
allows you to detect peers with malicious
behaviors and block them from accessing
your systems. It benefits from a global
community-wide IP reputation database.

* Expose Prometheus endpoint
* Metrics for number of scenario matched

* Metrics for number of IP banned

<~ our blog post on blee.moe/crowdsec

Server, Containers and applications monitoring

0.049 18 17995

Up since (days) Attacks detected Banned IPs

Attacks By Scenario @ x

® cowsmeartytep-uostove Ses ® cosducurnun @ cowducurneyiustysow-o

o w ® ® % ¥ &
8§ 8 8 383 8 8 8

%0 1000

Process CPU Usage & x
@ arpon 801
300
%
<JO°
i '.". v .\--‘».._‘ »"""'7'."'""-""-,~.,.v.\"‘.."‘."7_"‘-"""
"W 1w wie w» w» we

Parsed lines & x
@ vwioplapaihe access kg @ arogiagache oo iog @ Natog/sah g
00
©woe
000
000
«©
000
o350 woe 1010 o2 10% 00
Banned IPs by scenario @ x

@ cowdmecurtyfapacte K& cve-2023 44228 © cowduacuny - 8g-p-cve- 20009602
© owdsecurtySonnet Cve- 2038 33379 @ Cowdsecuniy hap Dack oo anemges
rowiseturty D bad user agert. @ crowdsecurty D Crmwl oon_siases

S (0
12000 00
($000 00
o) 0O
10 O
om0
»w woe wie e 0w 1040
Process Mem Usage & x
@ wponsons
Loe
105ue I
100M0
<H0‘I
W |
e
LERL |
o % 000 » » -~

blee.moe/crowdsec

Conclusion

* Monitoring your Security is a must have nowadays
» Concentrating your security information in your Monitoring tool can be quick and efficient
» Use standards for getting metrics of your security software and equipment's

* Bleemeo automates all metrics collection and allows you to create custom dashboards

Server, Containers and applications monitoring

Questions?

* Try for Free 3leameo

https://bleemeo.com/trial

https://bleemeo.com/trial

