3lesmeo

5

Webinar
Monitoring v
z
Kubernetes
10 Juin 2022 =
@ 11h00 cec P X N

bleemeo .com

Who am I?

Lionel Porcheron, CEO & co-founder Bleemeo

*Ops background, managing 500+ machines in classical DC and
in the Cloud

*DevOps for +15 years (started my monitoring journey with
Aagies-netsaint)

*Toulouse DevOps Meetup Leader, Capitole du Libre Leader

Bleemeo?

Observability & Monitoring as a service solution
Monitor your Servers, Containers, and applications in 30s
Prometheus, Graphite, StatsD, Nagios, compatible

2 Open Source projects (https://github.com/bleemeo):

o Glouton, universal monitoring agent written in Go with
Prometheus, StatsD, Graphite, Nagios compatibility

o SquirrelDB, a scalable Prometheus compatible storage
backend based on Cassandra

https://github.com/bleemeo

Kubernetes “k8s”

* Reference container orchestration platform

* Project has been initiated by Google and is now hosted by Cloud Native Computing Foundation
(CNCF)

* Written in Go

* You can deploy it on your infrastructure, but vendors also offer managed
Kubernetes: AWS, Azure, Google Cloud Platform, OVH, Scaleway, ...

i:]_eemeO Server, Containers and applications monitoring

Kubernetes Monitoring Challenges

* Kubernetes rely on a lot of components: API, kubelets, scheduler, controller
manager, etc ...

* Nodes number in a Kubernetes cluster can be increasing/decreasing on
demand

* Container in Kubernetes are short life: you can start/stop project, upgrade
them, ...

* Workload running on Kubernetes are moving parts. K8s decide the best
place at each deployment

* Kubernetes has a built-in container self healing solution

* Resources running in Kubernetes are usually only accessible from the
Kubernetes

P cereE Server, Containers and applications monitoring

Kubernetes is complex...
... monitoring Kubernetes iIs a project itself

Key Metrics / “Golden Signals”

The RED Method

*(Request) Rate - the number of requests, per second, your services are
serving.

*(Request) Errors - the number of failed requests per second.

*(Request) Duration - distributions of the amount of time each request takes.

The USE Method

*(Resource) Utilization: as a percent over a time interval. e.g., "one disk is running at 90% utilization".
*(Resource) Saturation: as a queue length. e.g., "the CPUs have an average run queue length of four".

*(Resource) Errors: scalar counts. e.g., "this network interface has had fifty late collisions".

Server, Containers and applications monitoring

Monitoring Tools for Kubernetes

* Nagios & similar tools work with a “static” inventory and are not
designed for containers and dynamic workloads

* Prometheus has been designed for this & heavily rely on labels usage

* SaaS tools like Bleemeo & others are also designed for Containers &
Kubernetes

* Kubernetes monitoring is usually deployed inside Kubernetes (except
Cloud solutions)

* Principle: measure everything, get metrics for everything you can

* Don’t forget notifications (for what require human attention !)

i: legmeo Server, Containers and applications monitoring

Use Prometheus (format)

Prometheus in a nutshell

* Prometheus was "initiated" in 2012 at Soundcloud and is now a (graduated) CNCF project

* Prometheus became de-facto standard for monitoring

* A Time Series Database where data is identified by metric name and labels (key/value pairs)
* A powerful PromQL query language

* No complex storage: designed to store multiple days (not weeks) of data

* Data are collected via a poll over HTTP

* A rich ecosystem with exporters (to get metrics) and web panels (query & display)

Prometheus

Z; lesmeo Server, Containers and applications monitoring

Prometheus metrics

* Prometheus metrics endpoint is a plain text "web
I:)agell

< C @ © @ localhost:8000/metrics

django_http_requests latency seconds by view method bucket{le="+Inf",method="GET",view="prometheus-django-metrics"} 1.0
django_http_requests_latency seconds by view method count{method="GET",view="prometheus-django-metrics"} 1.0
django_http_requests_latency seconds by view method sum{method="GET",view="prometheus-django-metrics"} 0.004497956004342996

django_http_requests_latency seconds_by view method bucket{le=

django_http_requests_latency seconds by view _method |_bucket{l
django_http_requests_latency seconds_by view | | method |_bucket{l
django_http_requests_latency seconds by view | method |_bucket{l
django_http requests latency seconds by view method bucket{l
django_http_requests_latency seconds by view | method |_bucket{l

.01",method="GET",view="<unnamed view>"} 1.0
025", method="GET",view="<unnamed view>"} 2.0
.05",method="GET",view="<unnamed view>"} 2.0
075", method="GET",view="<unnamed view>"} 2.0
1",method="GET",view="<unnamed view>"} 2.0

25" ,method="GET",view="<unnamed view>"} 2.0

NUNHOOOOO® O

django_http requests latency seconds by view I | method |_bucket{l 5", method="GET",view="<unnamed view>"} 2.0
o H u m a n rea d a b | e d;ango http_requests_ 1atenc¥ seconds_by view | method |_bucket{l 75" ,method="GET",view="<unnamed view>"} 2.0
django_http requests latency seconds by view I _method |_bucket{l 0", method="GET",view="<unnamed view>"} 2.0
django_http_requests_latency seconds by view | method |_bucket{l 5", metho ET",view="<unnamed view>"} 2.0
django_http requests latency seconds by view I _method |_bucket{l 0", metho ET",view="<unnamed view>"} 2.0
django_http_requests_latency seconds by view | method |_bucket{l .5",method="GET",view="<unnamed view>"} 2.0
r-'rl django_http_requests latency seconds by view I | method | bucket{le="10.0",method="GET",view="<unnamed view>"}
¢ Sca ped by a Pro etheus Se rver django_http_requests_latency seconds by view _method |_bucket{le="25.0",method="GET",view="<unnamed view>"}
django_http requests latency seconds by view method bucket{le="50.0",method="GET",view="<unnamed view>"}
django_http_requests_latency seconds by view | method |_bucket{le="75.0",method="GET",view="<unnamed view>"}
django_http requests latency seconds by view method bucket{le="+Inf",method="GET",view="<unnamed view>"}
. . django_http_requests_latency seconds_by view method_count{method="GET", v1ew—"<unnamed view>"} 2.0
[] D t b d th P QL django_http requests latency seconds by view method sum{method="GET",view="<unnamed view>"} 0.01597754599788459
a a Ca n e q u e rl e WI ro m django_http_requests_latency seconds by view | method |_bucket{le="0.01",method="GET",view="bleemeo_quote.views.index"} 686.0
django http requests latency seconds by view method bucket{le="0.025",method="GET",view="bleemeo quote.views.index"} 689.0
django_http_requests_latency seconds by view | method |_bucket{le="0.05",method="GET",view="bleemeo_quote.views.index"} 689.0
django_http requests latency seconds by view method bucket{le="0.075",method="GET",view="bleemeo quote.views.index"} 692.0
° django_http_requests_latency seconds by view | method |_bucket{le="0.1",method="GET",view="bleemeo_quote.views.index"} 692.0

django_http requests latency seconds by view method bucket{le=
django_http_requests_latency seconds by view | method |_bucket{le=
django_http requests latency seconds by view method bucket{le=
django_http_requests_latency seconds by view | method |_bucket{le=
django http requests latency seconds by view method bucket{le=
django_http_requests_latency seconds by view | method |_bucket{le="5.0",method="GET",view="bleemeo_quote.views.index"} 692.0

django http requests latency seconds by view method bucket{le="7.5",method="GET",view="bleemeo quote.views.index"} 692.0
django_http_requests_latency seconds by view | method |_bucket{le="10.0",method="GET",view="bleemeo_quote.views.index"} 692.0
django_http requests latency seconds by view method bucket{le="25.0",method="GET", view="bleemeo quote.views.index"} 692.0
django_http_requests_latency seconds by view | method |_bucket{le="50.0",method="GET",view="bleemeo_quote.views.index"} 692.0
django_http requests latency seconds by view method bucket{l 75.0",method="GET",view:"bleemeofquote.views.index"} 692.0
django_http requests latency seconds by view method bucket{le="+Inf",method="GET",view="bleemeo quote.views.index"} 692.0
django_http_requests latency seconds by view method count{method="GET",6view="bleemeo quote.views.index"} 692.0
django_http_requests_latency_seconds by view | method |_sum{method="GET",view="bleemeo_quote.views.index"} 1.1842275859380607

TYPE django http requests latency seconds by view method created gauge

django_http_requests_latency seconds_by view method created{method "GET",view="prometheus-django-metrics"} 1.572701763289514e+09
django_http requests latency seconds by view method created{method="GET",view="<unnamed view>"} 1.5727017632967687e+09
django_http_requests_latency_seconds by view | method |_created{method="GET",view="bleemeo_quote.views.index"} 1.5727018193420057e+09
HELP d]ango http requests unknown latency total Count of requests for wh1ch the latency was unknown.

25", method="GET",view="bleemeo_quote.views.index"} 692.0
5",method="GET",view="bleemeo_quote.views.index"} 692.0
75", method="GET",view="bleemeo_quote.views.index"} 692.0
0",method="GET",view="bleemeo_quote.views.index"} 692.0
5",method="GET",view="bleemeo_quote.views.index"} 692.0

Can be used by Prometheus ecosystem: Alert
Manager, Grafana...

NUNHFOOOO0 00

Server, Containers and applications monitoring

lesmeo

Monitor Kubernetes
from inside

&
from outside

Monitoring Kubernetes itself

You should monitor in your k8s cluster nodes:

* Resource utilization: CPU, memory, 1/0, disk space

* k8 components are running correctly: kubelet, api

* Certificates validity (by default, certificates are valid 1 year)
* Number of nodes in the cluster

* Number of pods in the cluster

* Usually rely on a DaemonSet container

*kube-state-metric project from Kubernetes is a good base for k8s metrics

z lesmec Server, Containers and applications monitoring

Monitoring Services in k&8s (Pods)

* Your monitoring should be using Service Discovery to find Pods

* Monitor resource utilization: CPU, memory, /0O, disk space

* Monitor usage (rate, response time, errors code)

* Application metrics

* Use Prometheus ecosystem to monitor your services & applications
* Instrument your code using Prometheus SDK

* Define proper tags in your metrics to be able to query them later

* Don’t forget in Prometheus paradigm that a label modification implies new metric

Server, Containers and applications monitoring

Monitor service globally

* Monitor service availability from outside of
Kubernetes

* Use external probes to monitor your service
* Monitor service usage globally

*Use open source project: Blackbox exporter
(for e.g.) or Cloud solutions: Uptime Robot,
Bleemeo

; legmeo Server, Containers and applications monitoring

Overloading your Kubernetes

* When something wrong happens, all team members open monitoring hosted in k8s and
generate extra load...

* Monitoring can be resource consuming
* Focus on golden signals and important metrics

* Pay attention when designing your dashboards

Server, Containers and applications monitoring

Building your dashboards

* If you use Prometheus, usual solution is Grafana
* You can find dashboards templates
* You can build your dashboards

* Prioritize golden signals of all cluster for your default dashboard

(REERENE R P LR

* Have detailed dashboards to go deeper for each node/Pod

* Cloud tools like Bleemeo offer automatic dashboarding

4 AT SO BN @

Server, Containers and applications monitoring

Don’t forget alerting

* Golden signals are a good source of alerts

* Alerting means immediate attention is
required

* Notify only when human action is required

* Check your dashboards

F]_eeme() Server, Containers and applications monitoring

Server to apps coverage

* Allow to correlate usage metrics and system metrics
* Allow to diagnose issue with business and technical data

* Prometheus can easily scrape metrics from:
» Servers (node exporter, cAdvisor, Bleemeo Glouton)

 Services (services exporters)

Application

e Kubernetes (kube-state-metric)

» Application (instrumenting your code)

/ /metrics

)

Kube State Exporter >

Kubernetes - /
| v

-~ Compute

Node Exporter
cAdvisor

>

Server, Containers and applications monitoring

Bleemeo simplifies and automates
monitoring deployments

Bleemeo Monitoring Solution

* Cloud based solution Meve B < . m—

3 @ @ Lo

P Com patlble With PromEtheUS and market j 0 Critical 0 Warning Health Overview Infrastructure Timeline
standards (StatsD, Nagios, ...) S onfne 161 OK e
e tlsO‘I-kBsDZ.bIe?:‘ei:.:v:rk o
* Agent run on each server and discover services, |

- L 3 E)kAgem connection is7:l:

containers and create dashboards for you o 8 OK 6 OK e
* Alerting with Slack, Teams, mail, SMS, ... T b et
- Query data (on dashboards and alerting) with
standard PromQL SR oo o
* Mobile application for iOS and Android e b

I s01-k8s03.bleemeo.work

Server, Containers and applications monitoring

k8s Monitoring with Bleemeo

[ece m- < 0 e o+ w]
* k8s dashboard is automatically build * @ |
N\ 8s_demo dashboard ®
* Health map of your cluster with: @
Kubelet Status Kubernetes AP Status |
 Status of APl & kubelets on each node ©
* CPU utilization for all nodes of the cluster 2 ..- ..- |
 Memory utilization for all nodes of the cluster Ml CPUused CPU Pods Status |
* Disk utilization for all nodes of the cluster ¢ ... wa S S S |
» CPU utilization for all Pods .-.- |

20-30 @30-40 ©40-50 50-60 ®60-70 ®70-80 @80-90
@290-100
Disk used
©0-10 ©®10-20 ®20-30 ®30-40 ©40-50 ©50-60 ®60-70 ®70-80 @80-90
@90-100

Memory used

* Configured by setting an environment variable

* Can be used in hosted & managed deployments

z lesmeo Server, Containers and applications monitoring

Conclusion

* When deploying Kubernetes, monitoring your cluster is a project by itself

* Use Prometheus format to collect and query your metrics

* Use golden signals metrics

* Do not underestimate load involved by deploying a monitoring solution on your k8s cluster

* Use managed solutions if you don’t want/have the time to deploy & maintain complex stuff

Server, Containers and applications monitoring

Questions?

* Try for Free 3leameo
https://bleemeo.com/trial

Voucher: WEBINARK8S2022 until next Friday

https://bleemeo.com/trial

