3lesmeo

WEBINAR
MONITOREZ VOS
APPLICATIONS .

E 08 .III Lionel Porcheron
JU”_LET HEURE CEO&CO: eeeeeeeeeeeeeeeee

Who am |?

Lionel Porcheron, CEO & co-founder Bleemeo

*Ops background, managing 500+ machinesin classical DC and
in the Cloud

*DevOps for +15 years (started my monitoringjourney with
Aagiesnetsaint)

*Toulouse DevOps Meetup Leader, Capitoledu Libre Leader,
PyconFR 2017 Organizer

Bleemeo?

Observability & Monitoringas a service solution
Start monitoring your infrastructure in 30s
Prometheus, Graphite, StatsD, compatible

2 Open Source projects (https://github.com/bleemeo):

o Glouton, universal monitoring agent written in Go with
Prometheus, Statsd, Graphite, Nagios compatibility

o SquirrelDB, a scalable Prometheus compatible storage
backend based on Cassandra

https://github.com/bleemeo

From servers to the apps

Server monitoring is now a standard
Monitoring disk (space), memory, CPU, network, ...
Services statistics became standard (with standard modules of monitoring software)

Prometheus became de-facto standard for modern monitoring metric centric

Application monitoring require a code effort... standards tools can help

Teams Specialization

Team specialization allow to have a deeper knowledge of the stack/application
Applications became more and more complex

If you have application metrics and with application complexity (micro-services), a single
sysadmin team can't manage all services

Google introduced SRE (Site Reliability Engineer)
Amazon introduced "you build it, you run it"

Team specialization: running datacenter, running servers, running Cloud layer, running
applications

Graphite... and Prometheus

Graphite change the way we were doing monitoring: metrics became central
Graphite appeared in 2008

Big adoption in startup beginning in the 2010 years associated with StatsD
Prometheus became de-facto standard for monitoring

Prometheus was "initiated" in 2012 at Soundcloud and is now a (graduated) CNCF project

Prometheus

Observability Key Metrics

The RED Method
(Request) Rate - the number of requests, per second, you services are serving.
(Request) Errors - the number of failed requests per second.

(Request) Duration - distributions of the amount of time each request takes.

The USE Method
(Ressource) Utilization: as a percent over a time interval. eg, "one disk is running at 90% utilization".
(Ressource) Saturation: as a queue length. eg, "the CPUs have an average run queue length of four".

(Ressource) Errors: scalar counts. eg, "this network interface has had fifty late collisions".

StatsD

StatsD

A network daemon that runs on the Node.js platform and listens for statistics, like counters and timers, sent over UDP
or TCP and sends aggregates to one or more pluggable backend services (e.g., Graphite).

Created by Etsy (US online marketplace), inspired by Flickr (photo sharing service)
Receive data from your application and send them to a backend (usually Graphite)

StatsD + Graphite was a popular association in numerous startups

StatsD principles

Applications push data to StatsD

Metric value can be:
* Counter: number sent by your application (e.g. number of active sessions)
* Gauge: value with a state, can be increased/decreased (e.g. number of sales on your site)
e Timing: time value
The basic line protocol expects metrics to be sent in the format:

So the simplest way to send in metrics from your command line if you have StatsD running with the default UDP server
on localhost would be:

echo "foo:1|c" | nc -u -w@ 127.0.0.1 8125

You can find a library for your language

StatsD backends

Monitoring backend

StatsD can push data to Graphite

NodeJS App

Aggregated metrics

StatsD server

| StatsD |---(UDP/TCP repeater)--->| statsd_exporter <---(scrape /metrics)---| Prometheus |

StatsD example in Python

Incrementing a counter

Sending a timer

>> import statsd

>>> ¢ = statsd.StatsClient('localhost', 8125)
>>> c.incr('foo') # Increment the 'foo' counter
>>> c.timing('stats.timed', 320) # Recor

Push & Pull strategies

With StatsD, application push custom metrics and data

StatsD libraries are light

You need to deploy a StatsD daemon... and a backend (can be a SaaS solution)

Prometheus is working the other way: Prometheus scrape data from your application

Prometheus Overview

A Time Series Database where data is identified by metric name and labels (key/value pairs)

A powerfull PromQL query language

No complex storage: designed to store multiple days (not weeks) of data

Data are collected via a pull over HTTP

A rich ecosystem with exporters (to get metrics) and web panels (query & display)

Prometheus Python example

Example Of Dja ngo Web framework korfuri / django-prometheus MUsedby~ 154 @Watch~ 21 *star 490 YFork 127

< Code Issues 24 Pull requests 8 Projects 0 Wiki Security Insights
FO r DJ a n go a p p I I Ca t I O n : dJ a n go_ p ro I I l et h e u S Export Django monitoring metrics for Prometheus.io
prometheus diango django-prometheus python monitoring exported-metrics metrics prometheus-client
Dja ngo IVI id d | eWa re fo r et ri CS D 262 commits I 9 branches 0 27 releases A2 27 contributors &l Apache-2.0
Branch master = | New pull request Create new file ~ Upload files Find file
. asherf Merge pull request #133 from asherf/dups Latest commit @16fa7f 6 days ago
B django_prometheus Merge pull request 33 from asherf/dups 6 days ago
I documentation Use range instead of xrange for Python 3 compatibility 24 days ago
I examples Change config.file declaration from .conf to .yml last month
MI DDLEWARE = [.gitignore Added possibility to export metrics of several caches backends (#69) 2 years ago
'django prometheus.middleware.PrometheusBeforeMiddleware', B travisymi Jse black 11 days ago
dJ ango.cont r}b .sessions. middleware.Ses sionV dd}ewa [ERP CONTRIBUTING md i markddoun i souee et monih
'django.contrib.auth.middleware.AuthenticationMiddleware"', A o l
. i i) . z nitial commi
'django.contrib.messages.middleware.MessageMiddleware',
q c q - q MANIFEST.in Include LICENSE file on pypi.io 2 montk
django _prometheus.middleware.PrometheusAfterMiddleware',
=l README.md use black 11 days ago
requirements.txt use black 11 days ago
setup.cfg pep8 is deprecated, use pycodestyle last month

setup.py Add support for Python 3.8 15 days ago

Prometheus metrics

Prometheus metrics endpoint is a plain text "web page"

Human readable
Scaped by a Prometheus server

Data can be queried with PromQL

Can be used by Prometheus ecosystem: Alert Manager,

Grafana...

< C @ © @ localhost:8

django_http_requests latency seconds by view method bucket{le="+Inf" method="GET",view="prometheus-django-metrics"} 1.0
django_http requests latency seconds by view method count{method="GET",view="prometheus-django-metrics"} 1.0

django_http requests latency seconds by view method sum{method=

django_http requests latency seconds by view method _bucket{le="0.
django http requests latency seconds by view method bucket{le="0.
django_http requests latency seconds by view method bucket{le="0.
django http requests latency seconds by view method bucket{le="0.
django_http requests latency seconds by view method bucket{le="0.
django_http requests latency seconds by view method bucket{le="0.
django_http requests latency seconds by view method bucket{le="0.
django_http requests latency seconds by view method bucket{le="0.
django_http requests_latency seconds_ _by view | “method _bucket{le="1.
django_http _requests latency seconds by view | method _bucket{le="2.
django_http requests latency seconds by view method bucket{le="5.
django_http _requests latency seconds by view method bucket{le="7.
django_http requests latency seconds by view method bucket{le="10.0", method-"GET" view="<unnamed view>"}
django_http requests latency seconds by view method bucket{le="25.0",method="GET",view="<unnamed view>"}
django_http requests latency seconds by view method bucket{le="50.0",metho }
django_http requests_latency ‘seconds_ _by view | method _bucket{le="75.0",metho }
django_http requests latency seconds by view _method _bucket{le="+Inf",metho

GET",view="prometheus-django-metrics"} 0.004497956004342996

01", method="GET",view="<unnamed view>"} 1.0
025", method="GET",view="<unnamed view>"} 2.0
05" ,method="GET",view="<unnamed view>"} 2.0
075", method="GET",view="<unnamed view>"} 2.0
1",method="GET",view="<unnamed view>"} 2.0

25" ,method="GET" ,view="<unnamed view>"} 2.0
5",method="GET",view="<unnamed view>"} 2.0

75" ,method="GET",view="<unnamed view>"} 2.0
0", method="GET",view="<unnamed view>"}
5", method="GET",view="<unnamed view>"}
0",method="GET",view="<unnamed view>"}
5", method="GET",view="<unnamed view>"}

2.0
2.0
2.0
2.0

GET“,view="<unnamed view>"
ET",view="<unnamed view>"
"GET",view="<unnamed view>"}

django_http requests latency seconds by view method count{method="GET",view="<unnamed view>"} 2.0
django_http requests latency seconds by view method sum{method="GET",bview="<unnamed view>"} 0.01597754599788459

django_http requests latency seconds by view method bucket{le="0.

django http requests latency seconds by view method bucket{le="0.
django_http requests latency seconds by view method bucket{le="0.
django_http requests latency seconds by view method bucket{le="0.
django_http requests latency seconds by view method bucket{le="0.
django_http requests latency seconds by view methodrbucket{le—"a

django_http requests latency seconds by view method bucket{le="0.
django_http requests latency seconds by view method bucket{le="0.

django_http requests latency seconds by view method bucket{le="1.
django_http_requests latency seconds by view method bucket{le="2.
django_http requests latency seconds by view method bucket{le="5.
django http requests latency seconds by view method bucket{le="7.

django_http requests latency seconds by view method bucket{le="10.0",metho

01", method="GET",view="bleemeo_quote.views.index"} 686.0
025" ,method="GET",view="bleemeo quote.views.index"} 689.0
05", method="GET",view="bleemeo_quote.views.index"} 689.0
075", method="GET",view="bleemeo_quote.views.index"} 692.0
1",method="GET",view="bleemeo_quote.views.index"} 692.0
25" ,method="GET",view="bleemeo_quote.views.index"} 692.0
5",method="GET",view="bleemeo_quote.views.index"} 692.0
75" ,method="GET",view="bleemeo_quote.views.index"} 692.0
0",method="GET",view="bleemeo quote.views.index"} 692.0
5",method="GET",view="bleemeo_quote.views.index"} 692.0
0",method="GET",view="bleemeo_quote.views.index"} 692.0
5",method="GET",view="bleemeo quote.views.index"} 692.0
"GET",view="bleemeo_quote.views.index"} 692.0

django_http requests latency seconds by view method bucket{le="25.0",method="GET",view="bleemeo quote.views.index"} 692.0
django_http requests latency seconds by view method bucket{le="50.0",method="GET",view="bleemeo quote.views.index"} 692.0

django_http requests latency seconds by view method bucket{le="75.0",metho
django_http requests latency seconds by view method bucket{le="+Inf",metho
django_http requests latency seconds by view method count{method=

GET",view="bleemeo quote.views.index"} 692.0
"GET",view="bleemeo_quote.views.index"} 692.0
"GET",view="bleemeo quote.views.index"} 692.0

django http requests latency seconds by view method sum{method="GET",view="bleemeo quote.views.index"} 1.1842275859380607
TYPE django_http_requests_latency seconds by view method created gauge

django_http requests latency seconds by view method created{method="GET",view="prometheus-django-metrics"} 1.572701763289514e+09

django_http requests latency seconds by view method created{method="GET",view="<unnamed view>"} 1.5727017632967687e+09

django_http requests latency seconds by v1ewrmethod created{method="GET",view="bleemeo quote.views.index"} 1.5727018193420057e+09

HELP django_http requests_unknown latency total Count of requests for which the latency was unknown.

Server to apps coverage

I -
e -

Prometheus can easily scrape metrics from:
) | | e) e /metrics
Servers (node exporter, cAdvisor, Bleemeo Glouton) ~_Application
* Services (services exporters) > Kube State Exporter
* Kubernetes (kube state exporter) / Kubernetes
* Application (instrumentingyour code) :/ T Node Exporter

Allow to correlate usage metrics and system metrics

Allow to diagnose issue with business and technical data

Complete Example

Small Django application showing quote of the day

< C @ © @ localhost:8000

Whatever you think you can do or believe you can do, begin it. Action has magic, grace and power in it. Y~ (E;rc]f(]r1<]

-- Johann Wolfgang von Goethe
WSGl '\@‘_ O

Prometheus
27 [wsa

WSG |

&B redis
Code is available on Bleemeo Labs github: https://github.com/bleemeolabs/quote

Monitoring your logs

StatsD and Prometheus can be used to monitor logs
A deamon on your server can parse logs and generate metrics

Number of requests, error rate, request time are common metrics

Promtail can be used to expose a Prometheus endpoint from your logs

Apps monitoring with Bleemeo

M Temperature 2
Can replace Prometheus server and Grafana

|= 882 — —
Open Source agent "Glouton" scrape Prometheus endpoint e
All network streams are authenticated (different for each server) and 123 ¢ oon
encrypted (TLS 1.3) 2500
Metrics can be queried and dashboards configured using PromQL queries ©
Service autodiscovery is built-in in the agent
Queries

Coming soon: alerts can be configured using PromQL queries

*
PromQL Query room_sensor_temperature

Legend Template

{{room}}

Monitoring as a Service

Setup and scale Prometheus infrastructure can be time consuming
Using a Monitoring as a Service platform may help
Multiple vendors offer Prometheus as a Service backend

Bleemeo is one of them :)

Focus on application development and business

Conclusion

StatsD and Prometheus are tools to easily start application monitoring
e StatsD is very basic but very simple to integrate

* Prometheus is much more powerfull but require more work
Prometheus will allow you to mix system, services and applications metrics
Prometheus is de-facto standard for monitoring in 2021
Prometheus data are easy to query

OpenTelemetry is another framework you may want to have a look to go further

Questions?

7 Try Bleemeo for Free: .
https://bleemeo.com/trial

