WEBINAR

INTRODUCTION _
A PROMETHEUS

Lionel Porcheron
E 17 @ l l CEO & cofondateur de Bleemeo
JUIN HEU RE www.bleemeo .com

Bleemeo?

Observability & Monitoringas a service solution
Start monitoring your infrastructure in 30s
Prometheus, Graphite, Statsd, compatible

2 Open Source projects (https://github.com/bleemeo):

o Glouton, universal monitoring agent written in Go with
Prometheus, Statsd, Graphite, Nagios compatibility

o SquirrelDB, a scalable Prometheus compatible storage
backend based on Cassandra

https://github.com/bleemeo

Who am |?

Lionel Porcheron, CEO & co-founder Bleemeo

DevOps for +15 years (started my monitoring journey with aagies-netsaint)

Toulouse DevOps Meetup Leader, Capitole du Libre Leader, PyconFR 2017 Organizer

Old Monitoring Days

*Monitor your server as a blackbox

*Only monitor server & services (web server,
database)

*Only availability, not metrics

*Nagios & derivates

Microservices and modern era

eShopOnContainers reference application

I ncrease 4 rCh itectu re com pleXIty (Development environment architecture)

Increase number of technical : (" entty rcroservice TS :
. | T N
components to monitor P YL R e D = :
I ‘//API Gateways / BFF\\\‘ I’ Catilo.g n_\l_c:c;mce Lﬁ’o |
Moderns infrastructure base on] T e | H: :
. . I W i Mobile-Shopping } II : g - I
containers are dynamic : : N =E .
I ‘ I i P Jatal | Q-
| i . @, : '\\“—l“!]_‘_lﬁ _____________ / 7P = |
Some components may come from third | i || e LR S
. | I e Kel—Io - b/ 2 | i
parties) s I [wesstopeng | e B :
HTML |

I eShop SPA Web app I i ‘. "7‘» / I
I . ' | : - - '
| O : e \ |
I TT/:)(;SU\m;’A'wgulm / / I

Graphite... and Prometheus

Graphite change the way we were doing monitoring: metrics became central

Graphite appeared in 2008

Prometheus became de-facto standard for monitoring

Prometheus was "initiated" in 2012 at Soundcloud and is now a (graduated) CNCF project

Ecosystem based on Prometheus: exporters, Grafana, software themselves (Kubernetes, Traefik
& many others)

Z graphite

Prometheus

s/monitoring/observability/

No more monitoring as blackbox: we now know what is inside
Exports tons of metrics for future usage

Code need to be instrumented to provide business metrics

New Buzzzword @

Three pillars of observability

OBSERVABILITY

Observability Key Metrics

The RED Method
(Request) Rate - the number of requests, per second, you services are serving.
(Request) Errors - the number of failed requests per second.

(Request) Duration - distributions of the amount of time each request takes.

The USE Method
(Ressource) Utilization: as a percent over a time interval. eg, "one disk is running at 90% utilization".
(Ressource) Saturation: as a queue length. eg, "the CPUs have an average run queue length of four".

(Ressource) Errors: scalar counts. eg, "this network interface has had fifty late collisions".

Prometheus Overview

A Time Series Database where data is identified by metric name and labels (key/value pairs)

A powerfull PromQL query language

No complex storage: designed to store multiple days (not weeks) of data

Data are collected via a pull over HTTP

Prometheus Architecture

Prometheus server pull metrics
Can be integrated with service discovery
Pushgateway allow to push metrics

Alertmanager send alarms trigerred by
Prometheus Server

PromQL to query

Long term storage are external projects

Short-lived
jobs

push n"letrics
at exit

¥

Pushgateway

pull
metrics

¥

Jobs/
exporters

Prometheus
targets

kubernetes

Service discovery
file sd

4

discover
targets

' Prometheus server

----- Retrieval |- TSDB HTTP
server
Node HDD/sSD

Prometheus
alerting .~ pagerduty
Alertmanager [~ » Email
* \'notify“
N etc
pﬁsh
algrts
PromQL
Prometheus
web Ul
Grafana Data
------------------ o~ visualization
and export
APl clients

Prometheus exporters

Prometheus exporters export on web page metrics
(basic plain text page with a metric per line)

Prometheus poll regularly those endpoints

Some projects embed a Prometheus endpoint (gitlab,
traefik, ...)

Prometheus exporters exist for almost everything (244
projects listed today):

https://prometheus.io/docs/instrumenting /exporters/

< C @ 0)

» localhost:8000/met

django_http_requests latency seconds by view method bucket{le="+Inf" method="GET",view="prometheus-django-metrics"} 1.0

django_http requests latency seconds by view method count{method=
GET",view="prometheus-django-metrics"} 0.004497956004342996
django_http requests latency seconds by view method _bucket{le="0.
django http requests latency seconds by view method bucket{le="0.
django_http_requests latency seconds by view method bucket{le="0.
django http requests latency seconds by view method bucket{le="0.
django_http requests latency seconds by view method bucket{le="0.
django_http requests latency seconds by view method bucket{le="0.
django_http requests latency seconds by view method bucket{le="0.
django_http requests latency seconds by view | method _bucket{le="0.
django_http requests_latency seconds_ _by view | method _bucket{le="1. 2
django_http _requests latency seconds by view | method _bucket{le="2. 2
.0",method="GET",view="<unnamed view>"} 2.

django_http _requests latency seconds by view method bucket{le="7. 2
django_http requests latency seconds by view method bucket{le="10.0",method="GET",view="<unnamed view>"}
"25.0",method="GET",view="<unnamed view>"}
}

}

django_http requests latency seconds by view method sum{method=

django_http requests latency seconds by view method bucket{le="5

django_http requests latency seconds by view method bucket{le:
django_http requests latency seconds by view method bucket{le

"50.0",method="GET",view="<unnamed view>"
django_http requests_latency “seconds_ _by view | “method_ _bucket{le="75.0",method="GET",view="<unnamed view>"
django_http requests latency seconds by view | _method | _bucket{le="+Inf",method="GET",view="<unnamed view>"}

"GET",view="prometheus-django-metrics"} 1.0

01", method="GET",view="<unnamed view>"} 1.0
025", method="GET",view="<unnamed view>"} 2.0
05",method="GET",view="<unnamed view>"} 2.0
075" ,method="GET",view="<unnamed view>"} 2.0
1",method="GET",view="<unnamed view>"} 2.0

25" ,method="GET",view="<unnamed view>"} 2.0
5",method="GET",view="<unnamed view>"} 2.0

75" ,method="GET",view="<unnamed view>"} 2.0
0", method="GET",view="<unnamed view>"}
5", method="GET",view="<unnamed view>"}

5", method="GET",view="<unnamed view>"}

django_http requests latency seconds by view method count{method="GET",view="<unnamed view>"} 2.0
django_http requests latency seconds by view method sum{method="GET",bview="<unnamed view>"} 0.01597754599788459

django_http requests latency seconds by view method bucket{le:
django http requests latency seconds by view method bucket{le="0.
django_http requests latency seconds by view method bucket{le="0.
django_http requests latency seconds by view method bucket{le="0.
django_http requests latency seconds by view method bucket{le="0.
django_http requests latency seconds by view method bucket{le="0.

django_http requests latency seconds by view method bucket{le="0.
django_http requests latency seconds by view method bucket{le="0.

django_http requests latency seconds by view method bucket{le="1.
django_http_requests latency seconds by view method bucket{le="2.
django_http requests latency seconds by view method bucket{le="5.
django http requests latency seconds by view method bucket{le="7.

0.

01", method="GET",view="bleemeo_quote.views.index"} 686.0
025", method="GET",view="bleemeo quote.views.index"} 689.0
05", method="GET",view="bleemeo_quote.views.index"} 689.0
075", method="GET",view="bleemeo_quote.views.index"} 692.0
1",method="GET",view="bleemeo_quote.views.index"} 692.0
25" ,method="GET",view="bleemeo_quote.views.index"} 692.0
5",method="GET",view="bleemeo_quote.views.index"} 692.0
75" ,method="GET",view="bleemeo_quote.views.index"} 692.0
0",method="GET",view="bleemeo quote.views.index"} 692.0
5",method="GET",view="bleemeo_quote.views.index"} 692.0
0",method="GET",view="bleemeo_quote.views.index"} 692.0
5",method="GET",view="bleemeo quote.views.index"} 692.0

django_http requests latency seconds by view method bucket{le="10.0",method="GET",view="bleemeo quote.views.index"} 692.0
django_http requests latency seconds by view method bucket{le="25.0",method="GET",view="bleemeo quote.views.index"} 692.0
django_http requests_latency seconds by view method bucket{le="50.0",method="GET",view="bleemeo quote.views.index"} 692.0
django_http requests latency seconds by view method bucket{le="75.0",method="GET",view="bleemeo quote.views.index"} 692.0
django_http requests latency seconds by view method bucket{le="+Inf",method="GET",view="bleemeo quote.views.index"} 692.0

django_http requests latency seconds by view method count{method=

"GET",view="bleemeo quote.views.index"} 692.0

django http requests latency seconds by view method sum{method="GET",view="bleemeo quote.views.index"} 1.1842275859380607
TYPE django_http_requests_latency seconds by view method created gauge

django_http requests latency seconds by view method created{method="GET",view="prometheus-django-metrics"} 1.572701763289514e+09
django_http requests latency seconds by view method created{method="GET",view="<unnamed view>"} 1.5727017632967687e+09
django_http requests latency seconds by view method created{method="GET",view="bleemeo quote.views.index"} 1.5727018193420057e+09
HELP d)ango http_requests_unknown latency total Count of requests for which the latency was unknown.

https://prometheus.io/docs/instrumenting/exporters/

Prometheus ecosystem

We already covered exporters

A lot of projects are now natively proposing a /metrics Prometheus endpoint
Long term storage: Thanos, Cortex
Lot of libraries in various languages to instrument your code

Most famous project in ecosystem is Grafana

Prometheus Query Language

PromQL (Prometheus Query Language) allow to query metrics
Can guery one or multiple metrics
Can apply operators and functions on metrics

Return the per-second rate for all time series with the http_requests_total metric name, as measured
over the last 5 minutes:

rate (http requests total[Sm])
CPU time with labels to select your metric:

instance cpu time ns{app="lion", proc="web", rev="34d0f99",
env="prod", job="cluster-manager"}

Instrument your code

Example of Django web framework
For Django application: django-prometheus

Django Middleware for metrics

MIDDLEWARE = [
'django prometheus.middleware.PrometheusBeforeMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware"',

'django.contrib.messages.middleware.MessageMiddleware',
'django_prometheus.middleware.PrometheusAfterMiddleware',

korfuri / django-promethe

us Musedby~ 154 © Watch ~ | 21 % Star 490 YFork 127

< Code Issues 24 Pull requests 8 Projects 0 Wiki Security Insights

Export Django monitoring metric

s for Prometheus.io

prometheus django django-prometheus python monitoring exported-metrics melrics prometheus-client

D 262 commits

¥ 9 branches O 27 releases A2 27 contributors s Apache-2.0

Branch master = | New pull request

. asherf Merge pull request #133 from
B django_prometheus
B documentation
I examples
.gitignare
B .travis.yml
CONTRIBUTING.md

LICENSE

MANIFEST.in
=l README.md

requirements.txt

setup.cfg

setup.py

Create new file

asherfidups

Merge pull request from asherf/dups
Use range instead of xrange for Python 3 compatibility

Change config.file declaration from .conf to .ym|

Added possibility to export metrics of several caches backends (

use black

Fix markdown lint issues

Initial commit

Include LICENSE file on pypi.io

use black

use black

pep8 is deprecated, use pycodestyle

Add support for Python 3.8

Upload files = Find file Clone or download »

Latest commit @16fa7f 6 days ago
6 days ago
24 days ago

last month

11 days ago

days ago

last month

15 davs aq
days agc

Example

Small Django application showing quote of the day

&« C @ © © localhost:8000

Whatever you think you can do or believe you can do, begin it. Action has magic, grace and power in it. 'f4\<35r(]f(]r1<]

-- Johann Wolfgang von Goethe
WSGl '\@‘— O

Prometheus
27 [wsa

WSG |

&B redis
Code is available on Bleemeo Labs github: https://github.com/bleemeolabs/quote

Prometheus Drawbacks

Metric centric, triggering alarms can be a bit more complex

Can consume a lot of resources, especially when deployed in your Kubernetes (kubernetes lack of
ressources, ops team start looking at grafana dashboards and... %)

Can be complex to scale

Not designed for high availability (without complex workaround)

Prometheus with Bleemeo

Can replace Prometheus server and Grafana
Data are scrapped from our Open Source agent "Glouton"

All network streams are authenticated (different for each server) and
encrypted (TLS 1.3)

Metrics can be queried and dashboards configured using PromQL queries
Service autodiscovery is built-in in the agent

Coming soon: alerts can be configured using PromQL queries

M Temperature 2

Ig 2882 —

28.00

‘= 27.00
123 < 26.00

25.00

© 24.00

23.00

2212 T T
L1 1] 08:10 08:20

Queries

*
PromQL Query room_sensor_temperature

Legend Template

{{room}}

Conclusion

Became de facto standard for new monitoring projects
Very easy to bootstrap a Prometheus + Grafana project
Can be resource consuming

Can be complex to scale

You should consider it for instrumenting your code

Questions?

7 Try Bleemeo for Free: .
https://bleemeo.com/trial

