


Bleemeo?

Observability & Monitoring as a service solution

Start monitoring your infrastructure in 30s

Prometheus, Graphite, Statsd, compatible

2 Open Source projects (https://github.com/bleemeo):

◦ Glouton, universal monitoring agent written in Go with 
Prometheus, Statsd, Graphite, Nagios compatibility

◦ SquirrelDB, a scalable Prometheus compatible storage 
backend based on Cassandra

https://github.com/bleemeo


Who am I?

Lionel Porcheron, CEO & co-founder Bleemeo

•DevOps for +15 years (started my monitoring journey with nagios netsaint)

•Toulouse DevOps Meetup Leader, Capitole du Libre Leader, PyconFR 2017 Organizer



Old Monitoring Days

•Monitor your server as a blackbox

•Only monitor server & services (web server, 
database)

•Only availability, not metrics

•Nagios & derivates



Microservices and modern era

•Increase architecture complexity

•Increase number of technical 
components to monitor

•Moderns infrastructure base on 
containers are dynamic

•Some components may come from third 
parties



•Graphite change the way we were doing monitoring: metrics became central

•Graphite appeared in 2008

•Prometheus became de-facto standard for monitoring

•Prometheus was "initiated" in 2012 at Soundcloud and is now a (graduated) CNCF project

•Ecosystem based on Prometheus: exporters, Grafana, software themselves (Kubernetes, Traefik
& many others)

Graphite... and Prometheus



s/monitoring/observability/

•No more monitoring as blackbox: we now know what is inside

•Exports tons of metrics for future usage

•Code need to be instrumented to provide business metrics

•New Buzzzword😎



Three pillars of observability



Observability Key Metrics

The RED Method

•(Request) Rate - the number of requests, per second, you services are serving.

•(Request) Errors - the number of failed requests per second.

•(Request) Duration - distributions of the amount of time each request takes.

The USE Method

•(Ressource) Utilization: as a percent over a time interval. eg, "one disk is running at 90% utilization".

•(Ressource) Saturation: as a queue length. eg, "the CPUs have an average run queue length of four".

•(Ressource) Errors: scalar counts. eg, "this network interface has had fifty late collisions".



Prometheus Overview

•A Time Series Database where data is identified by metric name and labels (key/value pairs)

•A powerfull PromQL query language

•No complex storage: designed to store multiple days (not weeks) of data

•Data are collected via a pull over HTTP



Prometheus Architecture

•Prometheus server pull metrics

•Can be integrated with service discovery

•Pushgateway allow to push metrics

•Alertmanager send alarms trigerred by 
Prometheus Server

•PromQL to query

•Long term storage are external projects



Prometheus exporters

•Prometheus exporters export on web page metrics
(basic plain text page with a metric per line)

•Prometheus poll regularly those endpoints

•Some projects embed a Prometheus endpoint (gitlab, 
traefik, …)

•Prometheus exporters exist for almost everything (244 
projects listed today):

https://prometheus.io/docs/instrumenting/exporters/

https://prometheus.io/docs/instrumenting/exporters/


Prometheus ecosystem

•We already covered exporters

•A lot of projects are now natively proposing a /metrics Prometheus endpoint

•Long term storage: Thanos, Cortex

•Lot of libraries in various languages to instrument your code

•Most famous project in ecosystem is Grafana



Prometheus Query Language

•PromQL (Prometheus Query Language) allow to query metrics

•Can query one or multiple metrics

•Can apply operators and functions on metrics

Return the per-second rate for all time series with the http_requests_total metric name, as measured 
over the last 5 minutes:

rate(http_requests_total[5m])

CPU time with labels to select your metric:

instance_cpu_time_ns{app="lion", proc="web", rev="34d0f99", 

env="prod", job="cluster-manager"}



Instrument your code

•Example of Django web framework

•For Django application: django-prometheus

•Django Middleware for metrics



Example
Small Django application showing quote of the day

Code is available on Bleemeo Labs github: https://github.com/bleemeolabs/quote



Prometheus Drawbacks

•Metric centric, triggering alarms can be a bit more complex

•Can consume a lot of resources, especially when deployed in your Kubernetes (kubernetes lack of 
ressources, ops team start looking at grafana dashboards and...💥)

•Can be complex to scale

•Not designed for high availability (without complex workaround)



Prometheus with Bleemeo

•Can replace Prometheus server and Grafana

•Data are scrapped from our Open Source agent "Glouton"

•All network streams are authenticated (different for each server) and 
encrypted (TLS 1.3)

•Metrics can be queried and dashboards configured using PromQL queries

•Service autodiscovery is built-in in the agent

•Coming soon: alerts can be configured using PromQL queries



Conclusion

•Became de facto standard for new monitoring projects

•Very easy to bootstrap a Prometheus + Grafana project

•Can be resource consuming

•Can be complex to scale

•You should consider it for instrumenting your code



Questions?

👉 Try Bleemeo for Free: 
https://bleemeo.com/trial


